If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-694=0
a = 1; b = 15; c = -694;
Δ = b2-4ac
Δ = 152-4·1·(-694)
Δ = 3001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{3001}}{2*1}=\frac{-15-\sqrt{3001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{3001}}{2*1}=\frac{-15+\sqrt{3001}}{2} $
| 3w2=2w-16=0 | | -3/7x=42 | | 50=13x | | 2(a+3)=4-3(4+8) | | -11x-13=5 | | 4(x+3)-4=7x+2 | | 2x/3+3=9 | | -7(a+2)-4=24-a | | 3m(3+8)=m | | -14x-18=15 | | 6(u-3)=-7u+34 | | 9x-6=10x-10 | | 8c=$60.00 | | 8x-1=4x+1 | | 4(4x-9)=2(8x+6) | | 18=2x-7 | | n/0.4=0.08/5 | | 5/8c=145 | | -1/2(p=2)=-3-p | | 3(x-5)=5(x-4) | | 3/5r=21 | | p-3(4+4p)=-78 | | .66x=6/4 | | 3(x^2)-62x-240=0 | | 17x+19=-3 | | 4/5r=7.75 | | -4x-13=9 | | 2(4x-7)=-15 | | 2(4x-7=-15 | | n/25=20/100 | | 84=-6(2-4r) | | (x+4÷8)=(7÷4)+(x-8÷5) |